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It is shown that paramagnetic impurities can induce nuclear spin diffusion in nonconducting

solids.

The component of the impurity spin along the external magnetic field (assumed to be
the z axis), because of its interaction with the lattice, fluctuates.
tensity of the magnetic moment has components at all frequencies.

The resulting spectral in-
The component at zero

frequency creates a static magnetic field which is different at two neighboring nuclei, thereby
splitting the levels | %, —%) and | —3, ), where the first and second quantum numbers refer,

respectively, to the z components of two neighboring spins.

These are exact two-spin eigen-

functions if the interaction of the nuclear spins is neglected. When this is taken into account,
the correct eigenfunctions to first order are $1=1%, ~3) +e|l—%, 3) and ¢y=1-3,4)—¢€l},
—3), where €is a small number. The Fourier component of the impurity spin at the frequency
corresponding to the energy difference of ¢; and ¥, causes transitions between these states.

This is a spin-diffusion process because € is small.

This means that Bloembergen’s differen-

tial equation for nuclear spin-lattice relaxation in nonconducting solids must be generalized to
include nuclear spin diffusion inside the critical radius.

I. INTRODUCTION

Bloembergen1 first showed the importance of
paramagnetic impurities in nuclear spin-lattice re-
laxation in nonconducting solids. His theory states
that nuclear relaxation is the result of two mechan-
isms. One is the direct relaxation of nuclei by
paramagnetic impurities and the other is nuclear
spin diffusion, 2 which arises from the nuclear di-
pole-dipole interaction and is on the order of 1072
cm?/sec.

The spins closest to the impurity feel the greatest
direct relaxation rates and this creates a gradient
in the magnetization. Spin diffusion transports the
magnetization throughout the sample, thereby

smoothing out the gradient and increasing the relax-
ation rate. Bloembergen set up the differential eq-
uation that describes this relaxation process:

— =DV ——yggm . (1)

m is the difference between the instantaneous value
of the magnetization and the equilibrium value of the
magnetization, D is the nuclear-spin-diffusion co-
efficient, v is the distance of the nuclear spins from
the paramagnetic impurity, and C is a coefficient
that describes the effect of direct relaxation. He
introduced the boundary condition that spin diffusion
vanishes inside a critical radius #,. This radius is
where the static field of the inipurity spin splits ad-
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jacent nuclear spin levels by an amount greater than
their linewidth, thereby making the spin-diffusion
process nonenergy conserving, and causing it to
vanish.

In this paper, a spin-diffusion mechanism that is
important inside the critical radius is derived. The
mechanism is the resonant field created by the im-
purity spin at the frequency necessary to induce mu-
tual spin flips between adjacent nuclear spins. This
means that Bloembergen’s differential equation (1)
must be generalized to include spin diffusion inside
the critical radius.

The correlation function and the spectral intensity
of the expectation value of the impurity spin are
needed for the calculation of the spin-diffusion
mechanism, and are derived in the Appendix.

II. NUCLEAR SPIN DIFFUSION INSIDE
CRITICAL RADIUS

Consider a nonconducting solid consisting of
molecules of nuclear spin 3, and having a small
number of paramagnetic impurities of magnetic mo-
ment u,. The sample is in an external magnetic
field H, along the z axis.

Spin diffusion in the nuclear spin system occurs
when two adjacent nuclear spins undergo transitions
from the state | 3, — ) to the state | -3, 3), or
vice versa. The first and second quantum numbers
refer, respectively, to the z component of two
neighboring spins ¢ and j.

The two nuclear spins interact with each other
through the nuclear dipole-dipole interaction

JC:F(—IIV —ﬁj)/as—3(-ﬂ.-i' a)(ﬁj. 5)/05,

where [1; and y; are the nuclear magnetic moments
of i and j and 2 is the radius vector between the two
nuclei. The effect of the other nuclear spins is to
cause a local variation in the nuclear Larmor fre-
quency.

The spins ¢ and j also interact with the paramag-
netic impurity. The impurity spin is assumed to
be so tightly coupled to the lattice that the nuclear
spin system has no effect on its behavior. This
allows us to treat the fields created by the fluctuat-
ing impurity spin as external fields. (A Fourier
analysis of the magnetic fields created by the im-
purity spinis in the Appendix. ) We denote the static
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field created by the paramagnetig impurity at the
nuclear spin 4, for example, as H;(0) and the Fou-
rier component at w as H;(w). The scalar quantities
H,;(0) and H{(w) denote components along the z axis.

The Hamiltonian incorporating the interaction of
the two nuclear spins with the external magnetic
field, with each other and with the paramagnetic
impurity is

$¢= = g, [Ho+ Hy(0)] = 1y, [Ho+ H,y(0)]

+3Cs = [ 1y Hy(w)+ & H;(w)] coswt. (2)
The Zeeman term
}co= — “'iz [H0+Hl(0)] - “jz[H0+Hj(0)] 4

which is the sum of the energy of spins 7 and j in
their respective total static magnetic fields, is the
zeroth-order part of the Hamiltonian. |3, ~ 3) and
| - 3, 3) are eigenfunctions of 3¢q. Inthe absence
of H;(0) and H,(0) they would be degenerate eigen-
functions.

3¢, will affect these two-spin eigenfunctions to
first order by mixing them. To first order, the
eigenstates are found to be

l})l: l %, "'%) _EI —%9 %)’
3)
sz: . -%, %)4‘6, %y "%>,
where €e=y27 (1-3 coszf?,,)/4a3(w‘ - w;). 6y is the
angle between the z direction and 2. w; and w, are
the Larmor frequencies of spins ¢ and j in their re-
spective instantaneous total static magnetic fields.
The total static field at any nucleus is the sum of
H, and the static field created at the nucleus by the
neighboring spins. At its largest, €~%. As 7 de-
creases to zero, € decreases.
Because € is small, diffusion is essentially tran-
sitions between the states ¥; and ¥,. The perturb-
ing term in the Hamiltonian

HCpere= = g+ Hy(w)+ 1+ Hy(w)] coswt

can induce such transitions, This term is the in-
teraction of the nuclear spins with the time-depen-
dent fields created by the impurity spin. :
According to first-order time-dependent pertur-
bation theory, a Fourier component of 3, at a fre-
quency w will create a transition probability W:

1
- My 8 723(1 — 3 cos?0;,)?[H,(w) — Hy(w)]? 6(w; —w; —
L ey e G
- Let us express, using (A10) of the Appendix:
Jw) (1 1V 27, (1 1\ (ud) —(uy)® 5
[Hy(w) = Hy(w)*=—=5= <;§—;§> =5 <;Z§_;§) -iﬁ—u"}z;z——, ()

where n; and »; are the number of lattice spacings,
nuclei ¢ and j are away from the paramagnetic cen-
ter, J,(w) is the intensity of the expectation value

|
of the impurity spin at w, and 7, is the spin-lattice
relaxation time of the impurity spin.

The nuclei neighboring 7 and j cause the local
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static field to change over time. This means that
Eq. (4) must be integrated over the line shape f(w)
of nuclei ¢ and j. After taking the line shape into
account and using (5), we find for the total transition
probability Wy :

Wp= 22 S72(1 =3 c0s?0,,)°7 (ua) = (p)?) (_1___1_>3

16a n ol

% L dw f(w )
x-/; dwif (w;) J[; (w; = wi)jz [1 "'j(wj ~w)re]
(6)

It is sufficient to evaluate (6) using a square shape
of width AH for f(w), because the difference be-
tween the contributions of various line shapes to Wy
is on the order of unity. The line shape for nucleus
i is centered at w;o=¥,[Hy+ H,;(0)], and for nucleus
j it is centered at w;o="7v,[Hy+H,;(0)]. After evaluat-
ing (6) with a square line shape and averaging over
angles, whereby {(1 -3 cos?0;;)%),,=%, we obtain for
the induced spin-diffusion coefficient D,:

w2 IYERET ((uB) —(ua)®) (1 1V
Dp = WTa = 20“10 n? ;?‘ I, (7)
where

1 2
I= Ty - -3 -1
(yﬁw>[2atan a-pBtan™'B~ytan™ o

2 2
+1n<ﬁ%f)+% m(l%fj)% In (%{-) ] . (8)
1In the above expression a=¥,7,[H;(0) — H;(0)],
B=v,T,[H,;(0) = H;(0)+ AH), and y =y,7,[H,(0) - H,(0)
~ AH].
This result is less complicated than it looks, for
often one of two limits applies. One is the short-

TABLE 1. Table of D,/D, the ratio of spin diffusion
induced inside 7, divided by Bloembergen’s spin-diffusion
coefficient. The critical radius for these experiments is
v,=4a~10 A. The 7, data used to calculate D, are taken
from Ref. 3. The numbers labeled » represent the num-
ber of lattice spacings, na, the nucleus is from the ce¥
ion.

r=na D,/D T(°K) T.(sec)
4a 0.02 2 1.5x1078
3a 0.2 2 1,5x10"°
2a 0.2 2 1.5%x1073
a 0.2 2 1.5x10"8
4a 4.3 5 7 x107!
3a 15.0 5 7 x107*
2a 19.3 5 7 x10™!
a 0.1 5 7 x107!
4a 1.3 10 2 x10-!
3a 1.4 10 2 x10™
2a 1.7 10 2 x10™
a 4.4 10 2 x10™4

correlation time region o, B,y <1, where I reduces
toI=1/(w;o=w;p)% (Generally, this limit applies
when 7,< 10" sec.) The other limit is the region

of long-correlation times a, B,y > 1, where

I21/7% (0¥ = wip)*. (This limit usually applies when
7,>10°° sec.)

To obtain some idea of the magnitude of D,, it is
helpful to compare Eq. (7) with Bloembergen’s spin-
diffusion coefficient D which Lowe and Gade? found
to be

D=0.15727/a. 9

We will take as an example spin diffusion induced
in CaF, by Ce®* paramagnetic impurities with a
magnetic moment j1,=2%107% cgs, The linewidth
of the fluorine nuclei is approximately AH=3 G, the
lattice constant is a=2.7A4, and 7,=2.5%10% cgs.
Bierig, Weber, and Warshaw® measured 7, of the
Ce®* ions in the temperature range 2< T< 15°K in an
external magnetic field of 1500 G.

The so-called barrier radius inside of which
Bloembergen’s diffusion coefficient vanishes, is de-
termined by equating H,(0) — H;(0) to AH. For these
experiments this gives a value of 7, ~ IOA, which
corresponds to n; or n; equal to 4. Thus, Bloem-
bergen’s spin-diffusion coefficient between mole-
cules 4-3, 3-2, and 2-1 vanishes (where the nota-
tion #n;-n; means adjacent fluorine nuclei »;a and »;a
away from the Ce®* impurity).

In Table I we show that such spin-diffusion tran-
sitions can be induced by the Ce®* ion. The results,
which are calculated using the data of Ref. 3, are
presented in the form of the ratio of D,,/ D, We note
that a nucleus can have spin-diffusion transitions
with nuclei other than its nearest neighbor. It can
also have mutual spin flips with its next-nearest
neighbor, for example, or with nuclei even further
away. Thus, in the column labeled D,/D, the re-
sults correspond to the most important D, of all
spin-diffusion transitions that a nucleus can make
inside 7, A For example, for the nucleus atn;=4,
the ratio D,/D is calculated using the largest D,
among the possible spin-diffusion transitions 4-3,
4-2, and 4-1. (Though a more exact answer would
be obtained by summing up the D, for all the transi-
tions, generally one of the transitions is so much
larger than the others that only it need be consid-
ered. )

The data in Table I show that at 7=5 and 10°K
the spin diffusion D, is greater inside 7, than out-
side 7,. At T'=2°K there is spin diffusion inside
7, but it is smaller than that outside #, and on the
order of D/5.

As another example, consider Leifson and Jef-
fries’s data® on the spin-lattice relaxation of Ce®*
in (Ce, La);Mg3(NO3);2* 24 H,O in a magnetic field
of 3600 G and in the temperature range 2< T<2,7°K.
The linewidth of the protons is AH=3 G, the lattice
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constant of the protons is a=3 A, 7,=1.66 X10* cgs,
and the magnetic moment of the Ce®* ions is
p,=1.62x10"% cgs., Under these experimental con-
ditions, 7,~12 .Z\, which corresponds to #; or n;
equal to 4.

In Table II we present the ratio D,/D calculated
using these data. These calculations show that at
T=2°K, except for the nucleus at 24, the spin dif-
fusion inside 7, is greater than it is outside. At
T=2.7°K, there is spin diffusion inside 7,; how-
ever, it is smaller than at 2. 0°K and is on the or-
der of D/5. '

These results show that a paramagnetic impurity
induces spin diffusion inside the critical radius.
This means that Bloembergen’s differential equation
describing the transportation of the magnetization,
Eq. (1), must be evaluated with the boundary condi-
tion that there is one spin-diffusion coefficient out-
side the critical radius and another one inside.

ACKNOWLEDGMENT

The author wishes to thank John W. Griffin for
his help in performing the calculations.

APPENDIX

In this Appendix® we derive the correlation func-
tion and the spectral intensity of the expectation
value of the z component of the impurity spin. The
spectral intensity is needed to find the total static
and time-~dependent magnetic fields created by the
impurity spin.

Consider a spin-3 impurity with magnetic moment
K, in an external magnetic field H along the z axis.
We assume the evolution of the z component of the
spin to be a Markov process. " Thus, the correla-
tion function G(7) of the expectation value of the z
component can be expanded:

G(7) = (1 (0)) k() = p1 (001, (0))1 (it ()4
+52(0) (p(0) 2 (up(T))2 . (A1)

The bar represents an ensemble average, the
brackets represent expectation values, and (u,(7)),
and (u,(7)), are (u,(r)) with the initial conditions
(p(0))1= = pp and {,(0))z=+u,. The quantities
£1(0) and p,(0) are the probabilities that at ¢=0, the
spinisinstate 1 (+3) or state 2 (- 3). For asolid, the
spins obey Boltzmann statistics. Therefore, p,(0)
=e"??/*T /7 (where Zisthe partition functionand % is
Boltzmann’s constant) and p,(0)=e™*#*/*7/Z  and
the correlation function can be written

et/ kT

G(1)= — (p(Thy = en?

/T
7 (p(Thz . (A2)

(ip(Ty and {u,(7)); are evaluated from the rate
equations for the two states,

dj dj
_pl‘=—P1 W*+pz w4 » —&=—p2Wf+p1 wy.

di dt (A3)
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TABLE II. Table of D,/D, the ratio of spin diffusion
induced inside #, divided by Bloembergen’s spin-diffusion
coefficient. The critical radius for these experiments is
r,=4a~12 A, The 7. data used to calculate D, are taken
from Ref. 5. The numbers in the column labeled » repre-
sent the number of lattice spacings, na, the nucleus is
from the Ce® ions.

r=na D,/D T(°K) T.(sec)
4a 0.1 2.7 10-2
3a 0.2 2.7 102
2a 0.3 2.7 10-2
a 0.01 2.7 102
4a 2.1 2.0 10-4
3a 3.2 2.0 10-*
2a 0.01 2.0 10-*
a 5.1 2.0 1074

W4 and W+ are, respectively, the probabilities that
a spin in state 2 will go to state 1 and that a spin in
state 1 will go to state 2. p, and p, are the proba-
bilities that states 1 and 2 are occupied.

The lattice is in thermal equilibrium. In order
that the relaxing spins also reach thermal equilib-
rium, it is necessary that the relaxation rate from
the higher energy levels to the lower ones be greater
than the transition rates from the lower levels to the
higher ones. For a spin-3 system this amounts to

WA/ Wi = 2hHIRT (A4)
Equations (A3) can be rewritten using (A4):

dp , dp,

i == Whit Wpae® | ZE=Wpy —We'p,,  (A5)

where x= —2u,H/kT and W¥=W. The solutions of
these equations are of the form p;= A €* and p,

=B ¢ with the conditions p,(f) + p,(f) =1. This leads
to a complete solution:

1
Pl(t)=1+e-x+Ale-mex”)t ’
(A6)

X

. _ -We*+1)t
pa(f)= 1727 Ae .

(kp())1 and (u,(7)); are evaluated using these solu-

tions with the appropriate initial conditions. For
example, since initially (u,(0));= —p,,
<I-Lp('r)>1 = /J'ppl('r) - I-LpPz('f)- (A7)

The initial conditions are p,(0)=1 and p,(0)=0.
Consequently, A;=e™*/(1+e™¥). Equations (A6) and
(A7), evaluated with this value of A, yield

~ “P(l _e-x) 2u,e"‘e'wu*e %)t
<I‘Lp(T)>l - 1 +e-x + 1 + e-x

’

(A8)

- %
___Eﬂ(e x_l) , %ﬁe-w(e +1)t
(p‘p(T»Z 1+e-x - 1+e-x

After Eq. (A2) has been evaluated with the results
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of Egs. (A8) and separated into constant and time-
dependent parts, the correlation function can be
written

G(1) = () 2+ () = utp) e . (A9)

The brackets () in Eq. (A9) signify the statistical
mechanical expectation value. The relationship
1/p= W4+ W¥=W(e*+1) was used in obtaining (A9).
It is evident from (A9) that the correlation time 7,
is equal to the spin-lattice relaxation time p. The
spectral density is defined as

E. PHILIP HORVITZ

3
J,(w):f_: dr e'“" G(r).
Thus
Jo(w) =i, )? 276(w) + () ~up)92r, . (A10)

1+ wrg

The methods used here to find G(7) and J,(w) for
spin-3 particles can be applied to any spin. How-
ever, the solutions for higher spins become more
complicated as more equations are involved [e. g.,
Eq. (A3) would have 2S+1 equations].
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The isomer shift of Au'®’

in Au-Hg alloys containing up to 12% Hg has been measured. The

change produced by the Hg is extremely small, five times smaller than that produced by any
solute studied previously. This result is compared with those in other gold alloys and com-
pounds. A microscopic theoretical calculation based on a partial-wave model is successful

in explaining this anomaly.

I. INTRODUCTION

The isotope Au'®” has been extensively used in
Mossbauer-effect research in a wide range of sys-
tems. The two areas of research that have been
investigated most intensively are the magnetic hfs
of the gold nucleus produced by the hyperfine field
(coming primarily from a contact interaction re-
sulting from conduction-electron polarization) oc-
curring in compounds of gold with magnetic atoms'-
and gold dissolved in magnetic metals, **® and the
“jsomer shift,” which determines the total electron-
ic density at the gold nucleus.

Gold has been a widely used material for isomer-
shift studies for two reasons: First, there is a
large body of information on gold chemistry and
metallurgy, so that there are large families of
well-established materials which can be studied.
Second, the strong Mdssbauer absorption and large

range of observed isomer shifts (about five times
the experimental linewidth) make it relatively easy
to make meaningful measurements on all of these
gold-containing systems.

A detailed analysis of the isomer shift in insulat-
ing gold compounds has recently been given.” The
extensive work done previously in metallic systems
can perhaps best be characterized in terms of in-
creasing sophistication as both experimental and
theoretical techniques developed. Almost ten years
ago, an extensive study was performed on the
isomer shift of gold dissolved as a dilute impurity
in a wide range of metallic hosts.® The conclusion
of that work was that a correlation could be obtained
between isomer shift and electronegativity of the
host, suggesting that the increased isomer shift
(corresponding to increased s-electron density at
the gold nucleus) resulted from the less-electro-
negative hosts giving up electrons to the gold ion.



